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Abstract. An algorithm is described for numerically evaluating functions defined 
by formal (and possibly divergent) series as well as convergent series of orthogonal 
functions which are, apart from a factor, orthogonal polynomials. When the 
orthogonal functions are polynomials, the approximations are rational functions. 
The algorithm is similar in some respects to the method of Pad6 approximants. A 
rational approximation involving Tchebychev polynomials due to H. Maehley and 
described by E. Kogbetliantz [1] is a special case of the algorithm. E 

1. Introduction. The solutions to many physical problems are obtained as 
expansions in (infinite) series of orthogonal functions. When the series are con- 
vergent they can in principle be approximated to any accuracy by truncating the 
series at the proper point. When the series are weakly convergent or divergent, the 
procedures for their numerical evaluation become rather ad hoc and a more general 
approach would be useful. In the following sections we describe an approximation to 
functions defined as infinite series of orthogonal functions which are (apart from a 
factor) orthogonal polynomials. The approximation takes the form of the ratio of 
two functions, the denominator function being a polynomial. When the orthogonal 
functions are polynomials, the approximating function is rational. 

The derivation of the algorithm will be formal and no real proofs are given. 
Indication that the algorithm is at least sometimes valid is provided by the numer- 
ical examples in Section 6. While the derivations could probably be made rigorous 
in the case of absolutely convergent series, interesting cases occur with divergent 
series such as the examples of Section 6. Numerous other practical applications of 
the algorithm have been made in the past year at Los Alamos Scientific Laboratory. 
The success of these examples would justify an effort at finding a class of functions 
representable by divergent series for which the algorithm is applicable. 

2. The Approximation. The approximations we shall discuss fall roughly into 
two problems. The first of these is the approximation problem, that is, given a 
function (or equivalently its expansion), find an easily calculated approximation to 
the function. The second problem is the summation of infinite series, that is, given 
an infinite series (which may not be convergent in the ordinary sense), assign a sum 
to the series which gives the same value as the ordinary summation method when 
the series is convergent. Clearly the two problems cannot be sharply separated. In 
this paper however we will lean more toward the second problem. 

For simplicity we assume the functions we will encounter are real on the real 
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interval [a, b]. The generalization to complex functions on the real interval [a, b] 
is trivial and the final results are identical to those which will be given. 

The quantity to be evaluated is given in the form, 

00 

(1) f(x))= Eclgl(x) 1=0O 

The basis functions {qI} are assumed to be orthogonal on [a, b] with weight function 
oo(x) and normalization ,ui and, apart from a factor, to be orthogonal polynomials, 

(2) qn (x) = qo(x)qn(x), 

where { n} are orthogonal polynomials of exact degree n with weight function 
go2CO. 

We introduce a set of complementary polynomials {pi} orthogonal on [a, b] with 
weight function co. The approximation to f is then given by 

M /N M /N 

(3) f(x) = Ad amam(x)/ A bnpn (X) = 9o(X) Ad amqm(x)/ A bnpnZ(X) 
m=o n=O m=o n=o 

where the sets of coefficients {ail and {bi} must satisfy 

N M co 

(4) f(x) A, bnpn(X)- E amgnq(x) = Z Pmgm(X) . 
n=O m=O m=M+NV+l 

We take bo = 1 and call this the standard normalization. Other choices of normaliza- 
tion of the coefficients may at times be more convenient. If we were to use the al- 
gorithm to compute the inverse of f as a series of polynomials {pi}, then ao = 1 
might be the most appropriate normalization. 

To solve the set of Eq. (4) it is convenient to introduce a matrix Hf associated 
with the function f whose element H/A is the coefficient of gm(x) in the expansion of 
f(x)pn(x) in terms of the set {gi}. An integral representation of the elements Hf is 
given by 

fb 

(5) Hfmn = f m- X Jb f X) Ph (Xpn co (x)dx. 
a 

The first column of Hf is proportional to the expansion coefficients of f(x), 

(6) Hmfo = p0Cm, 

and subsequent columns can be generated from the first by recursion. To see this 
we note the following properties of {gi}. 

(i) Orthogonality. 

rb 

(7) j m (X)gn (X)W (X)dx = ,UmbmnX 

where imn = 1 if m = n and 3mn = 0 otherwise. 

(ii) Closure. 

00b 

(8) f y) = tinu'!n (Y) f(x)gn(x)co(x)dx. 
n=0 a 
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(iii) Linear Recursion. 

(9) gn+l(x) = (anx + 3n)gnq(x) - yngn-i(x), 

which remains valid for n = 0 when gi,(x) is replaced by 0. The complementary 
polynomials {pi} satisfy (7) and (8) with normalization hi and 

(10) Pn+1(X) = (Anx + Bn)pn(X) -CnPn-l(X) 

again valid for n = 0 when pi,(x) is replaced by zero. 
Note that if we write 

(11) pn(X) = knx n +kn'xn + * po(x) =ko 
then 

(12) An = kn+1/knX Bn = An(k'+ /kn+l -kn/kn) 

Cn = Anhn/ (An-lhn-1) = kn+l1knlhn/ (kn2h _1) 

Similar relations hold for the { g.}. From the recursion relations (9) and (10) for the 
{go} and the {p } we see the elements of Hf satisfy the recursion relation 

(13) [B -m 3n + JI +l Hfm+lHn + 1Hf-lbn = 1 Hmfn+l +- Hminni1 An amJ am+1 a.ml i An An 

Since this relation remains valid for m or n equal to zero provided we set Hf ,1 = 
H-fl,n = 0 in Eq. (13), any segment of the matrix can be generated by recursion from 
the first column or from the expansion coefficients of f. 

Finally for later use we note that the elements of the inverse of Hf are given by 
rb 

(14) (Hf)m = = hm71 

as can be seen by multiplication by (5) and use of the closure relations (8). 
We now write the exact relation 

(15) B(x)f(x) - A(x) = r(x) 

where r(x) is a remainder and is related to the error in the approximation. Multiply- 
ing Eq. (15) by yIm-1gm(x)w(x)dx and integrating over [a, b] yields the set of equations 

N 

(16) Y2 Hmfnbn-am = pm, 
n=O 

with 
00 

(17) r(x) = Epmqm(X)e 
m=O 

We now require Pm to be zero for m < M + N. We note that such a requirement 
is the basis of the Pad6 approximation to a power series. The equations to be solved 
for the coefficients of A and B are 

N 

(18) HnbnH kCm, M + 1 m < M + N 
n=1 

and 
N 

(19) am= Hf nbn 0 < m < M. 
n=O 
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The coefficients of r(x) are given by 

N 

(20) Pm= Hfmbn M + N + 1 < m. n=0 

We define a "Pad6-like" table as a two-dimensional array of elements, the 
[N, M] element being the approximation with numerator of order M and de- 
nominator of order (or degree) N. It can easily be shown (by expansion of the 
determinants by minors) that the [N, M] approximation can be written as the ratio 
of determinants 

M M M 

E 
f 

Hog.()*EHmnam(x) * * v E Hfm,(x) m=0 m=0 m=O 
HM+1 ? **... HM+l,N 

Hfm+N,O Hf. ... HIN, HM+N O ** * M+N~n * M+N,N 

(21) [NM(x) = 

po (X) ... pn (X) ... pN(X) 

.HM+ ? *... HM+ln ... HfM+l,N 

HfM+N,O ... HM+N4n Hm+N,N 

Note that this expression uses a nonstandard normalization. In a similar manner 
the remainder r(x)/B(x) can formally be expressed as the ratio of the two deter- 
mninants above except that the sums over the index m in the numerator are over all 
m such that m > M + N. 

When M _ N, the approximation can be written in two forms. The first form is 
the improper fraction, 

(22) A (x) _ Em'arnm(x) 
B(x) ZN=obnpn(x) 

where the coefficients are given in Eq. (18) and (19) with M = N + L. The second 
form is the polynomial plus proper fraction 

L 1 

(23) A(x) D(x) + i(x) - Edg I(x) + LM=O amm(z) B (x) B (x) _ IVLb~~x 

The coefficients bn are obtained in both cases by solving Eq. (18) with M = N + L. 
If we expand the quantity 

(24) B (x) f (x) -B (x)D (x) (x) = r (x) 

we find the coefficients am are given by 
N L 

a25) tmh Hfcbnn Hdi ae g i m s Ni- 1 
n-=O 1=0 

and the coefficients dil are given by solving 
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L N 
(26) ,H.Bdz = 2Hf bn, N < m _ N + L I=o n=o 
As the notation indicates, HB is the matrix associated with the polynomial B(x). 
The Eqs. (26) are easily solved due to the simple structure of HB. (The submatrix in- 
volved in Eq. (26) is triangular.) 

The coefficients for the two forms (22) and (23) are related by 

(27) dL = aN+L/HN+LL, 

d -I = aN+L- - A, dL-mHB+L_11Lm HA LI1L-1 } 1 < ? < L 
m=J 

and 
L 

(28) nim = am.- a "m, L- idL- 0 mM < N-1 
1=0 

These latter equations contain no direct reference to f, and indeed they provide a 
way of calculating the proper fraction plus finite sum from any improper fraction. 
If the fraction is rational, they provide a method for applying the Euclidian al- 
gorithm to find common factors without first transforming the (finite) series of 
orthogonal polynomials to a power series. 

3. Relation to a Least Squares Approximation. One measure of the weighted 
error of the rational approximation to the function f(x) on the interval [a, b] is the 
quantity 

rb 

(29) e = f [B*(x)f(x) - A*(x)]2co(x)dx. 

(If the functions were complex, the squared quantity would be replaced by the 
squared magnitude.) This error is a function of the coefficients { a A} and { be}. For 
the moment consider B*(x) to be determined and A*(x) to be a polynomial of de- 
gree M. Then e is a quadratic function of the coefficients {a,*}. This error is min- 
imized when for each k ? M, 

a-=-2 j [B* ()fx) -A * (X) Igk (X)W (X)dX = 0, 

or 
N 

(30) ak =ZHkfbn* 0? ?k < M 
n=O 

Thus the set {ak*} which minimizes the error e is just that set given by the algorithm 
once the set { bi* } is determined. 

Now consider the minimization e with respect to the set of coefficients { be}. 
For each k ? N, 

3b* = 2 f [B* (x) f (x) - A*(X)I f (X)Pk(X)W(X)dX = 0, 

or 
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x0 N 

(31) E EHf bn*- al* IL IHfk = 0 I0 < k < N 

where a* -0 for 1 > M. 
This set of equations is to be solved for the bk*'s consistently with the set of 

equations (30) and a subsidiary condition involving the normalization for the 
ak*'s to give the least squares approximation to f(x). Although in principle the co- 
efficients can be obtained from Hf, in practice this is not always possible so the 
coefficients in Eq. (31) cannot be regarded as known. 

To obtain the equations of the algorithm, we hold M fixed and let N oo. The 
set of Eqs. (31) becomes 

(32) 

Hfcbn* 
= 

f 

al*klHka *0 _ k < 
oo. 1=0 n=o 1=0 

Now we can multiply by the inverse of Hf (14) and obtain, 

JHf bn* = a,* 0 _I <M, 
(33) n=0 

EJHfnbn* = 0 M + 1 < . 
n=O 

If we now truncate the set of Eqs. (33) we arrive at the equations of the al- 
gorithm. It is then clear that the algorithm does not yield a least squares approxi- 
mation except possibly in the limit N -- oo. 

4. Some Remarks on Convergence. In this section we will examine the con- 
vergence of the first two rows of the Pad6-like table under suitable restrictions on f. 
We note that the limit 

(34) limF1 +m+1 _ 1m1 2 La.m1 am+1 a.m 

is finite. This condition is satisfied by all of the classical orthogonal polynomials. We 
restrict f, defined by 

(35) f(x) = E Cmgm(X), 
m=O 

to be such that 

(36) cm --Nm'. 

We recall the following transformation for improving the convergence of the 
series (35). By formally rearranging the series and using the recursion relation for 
{gj} we can write 

(37) f = (x - a) E: Cm. m(X)X 
m=O 

where 

(38) cm' Cm1+ ym+lCm+l _ M + a cmc 
a.m_1 am+, am 
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If a is chosen such that 

(39) lim [ + 'Ym+i - = a 
moo+0 ?m-1 am+1 atm 

then 

(40) cm/ N'ml 

and the series (37) is (asymptotically) more rapidly convergent. We shall return to 
this result shortly. 

We note that the elements [0, M] of the first row of the Pad6-like table are 
simply the truncated sums 

M M 
(41) [0, M](X) = E amgm() = E Cmgm( X) 

m=o lnOm 

If the sum (35) is convergent to f, then the sequence of elements of the first row of 
the table are convergent to f. 

Now consider the elements of the second row of the table. Notice that 

HM+iI/Hm+1,o = Ao [Bo- ? M+I + 'YM+2 CM+2 + 1 CM 
(42) LAo aeM+1 aM+2 CM+1 aM CM+1J 

Bo0 1 + YM+2 _ /M+I]+C MI 
0 aHm aM+2 aem+1 

For large 111, we use (12) and (13) to write B(x) in a form which displays the posi- 
tion of the pole in the approximation, 

(43) K Bji + M+i 13 _ M - 

Lamv-i am - am J 

where K depends on the normalization. As M -? o, the pole moves to a position 
identical to that in Eqs. (37) and (39). 

The numerator AM(x) is given by 
M 

(44) AM(x) = E amgm( x) 
m=0 

where for large M, 

(45) a=K { 

Cm-i 
+ 

rYmn+iCm+i 
_ 1 Om 'YM+2 

+3M+21} (45) a. = K +F + --Cm. 
a~m-1 am+i Lam aM aM+2 aM+i 

In the limit M -oo, (with K = 1) this is identical to (38) and (39) and in this limit 
the approximation [1, M] is identical to the transformation mentioned at the be- 
ginning of this section. It is tempting to conjecture that as one moves down the 
table, the row-wise convergence improves. Numerical evidence indicates that this is 
the case, but proof remains to be found. 

We conclude this section with a formula for the remainder RNM(X), 

(46) RN (x) = f(x) - AM(x)/BN(x), 

when {Xg} = {Pn(af) (X) }, the set of Jacobi polynomials. Referring to Szeg6 [3, Eqs. 
(4.62.19) and (9.2.1)], we find 
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00 

E [hn(a?]-P)IPn(ctO ( W Qn(atd# (Y) 
nN+l 

2-a-P r(N + 2)r(N + a + + 2) 
(2N+ a + + 2)r(N + a +1)r(N + + 1) 

[PN+( ) QN (y) PN( (X) Q (a 
(y)] 

x -y 

The expansion coefficients of BNRNM are zero when their index is less than M + N 
and equal to those of BNf otherwise. It then follows that 

MN ~Pr(N + M + a)r(N + M + a + + 2)21-a-pe a 

(4v8) (2N + 2M + a + + 2)r(N +a+ l)r(N + + 2)BN(x) 

X ?1 [PN+M+1(X)QN+M(Y) - PN+M) (X) Q NI+i1 (Y) ]Bf dy 

where etaco(y) = (y - 1)a(y + 1)# and C is an ellipse with foci at ?41 and enclosing 
no singularity of f. With special values for a and A, (48) gives representations for the 
remainder in approximations involving Gegenbauer, Legendre, and Tchebychev 
polynomials. 

5. Numerical Examples. We now consider the application of the algorithm to a 
particular case, though some of the remarks made later are based on experience with 
other functions. Consider the function 

(49) -(l x)1 = (21 + 1) ( + i) (x) 

where {go} = {PJi, the set of Legendre polynomials. The symbol (a) I in Eq. (49) is 
defined by 

(50) (a)o = 1, (a), = a(a+ 1) ... (a+l-1). 

In particular we consider Eq. (49) with 7 = 1. 
The function in Eq. (49) when multiplied by the proper factor is the Coulomb 

scattering amplitude which one obtains in the nonrelativistic scattering of charged 
particles. The coefficients of the Legendre polynomials behave asymptotically 
as 11+21i as I --? oo. The series is divergent, but nevertheless represents the function 
on the left [4]. 

Referring to the Pad6-like table, we will consider the three-diagonal approxi- 
mations [4, 4], [8, 8], and [12, 12]. These three approximations were calculated on 
a LASL-Control Data 6600 computer. Single-precision floating point numbers are 
represented on this machine by a 48 bit mantissa (about 14 decimal digits). In Fig. 1. 
we have plotted the magnitude of the relative error. From Fig. 1 (and other calcula-. 
tions) several things are immediately apparent. As we move down the diagonal of 
the PadElike table (or more generally as M + N increases), the relative error is 
reduced over the interval [-1, 1). In these numerical calculations, the minimum 
error is of course bounded by the accuracy of the representation of the number (in 
this case t_10-14). Since this function has a branch point at x = 1, and sufficiently 
close to the branch point no finite configuration of poles and zeroes can "mock up" 



A METHOD FOR THE APPROXIMATION OF FUNCTIONS 283 

the branch point, the approximation fails close to x = 1. 

10? l I I l 

10-2 - 

104 

0 

> 06 

0 

I 0-1B - 88 - 

0% 

E 

lo-14 10-12- 
12,121 

I0-14 
I 

I- I - I I 
-1.0 -0.6 -0.2 .0.2 0.6 1.0 

FIGURE 1 

If we calculate the positions of the poles and zeroes in the complex plane for 
various finite approximations we find that they tend to lie along the branch cut from 
x = 1 to infinity and tend to accumulate at x = 1. We show this behavior in Fig. 2, 
where we have plotted their positions for the [12, 12] approximation. If in Eq. (49) 
we allow tn to vary, we find that as v 0, the poles and zeroes near the cut move 
closer to the real axis. Off the real axis the error in the approximation is somewhat 
larger than that indicated in Fig. 1. To the left of x = 1 and along the lines with 
the imaginary part of x equal to +41/2, the magnitude of the relative error is about 
10-8 and 10-9 for the [8, 8] and [12, 12] approximations and about 10-4 for the [4, 4] 
approximation. Thus the rational approximation is a useful analytic continuation 
into the complex plane. 

In practice it is found that in addition to poles along the branch cut of the 
function of Eq. (49), poles appear elsewhere in the complex plane in positions not 
related to the analytic structure of the approximated function. The positions of 
these poles vary rapidly from an approximation of one order to the next, and (if 
allowed by the order of M) they are usually cancelled by zeroes of the numerator 
(the numerator and denominator possess common factors). This cancelling by the 
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zeroes might be expected from the least-squares property of the numerator. We will 
call these spurious poles "nuisance poles." A similar phenomenon has been observed 
in Pad6 approximants [5, 6]. Although the form of the approximation is such that it 
is possible but not convenient to use the Euclidian algorithm for removing these 
common factors, the nuisance poles need cause no real probleni. If a nuisance pole 
of the [N, M] approximation should occur too close to a region of interest, then this 
will usually not be so for the [N - 1, M] or [N, M i 1] or one of the other adjacent 
approximations. 

ImX 
_ 0 [12,12] APPROXIMATION 

3-- 0 ZEROES 
X POLES 

2 

1 0 

0 Re X 

-2 @_1 Q ) A x2 3 4t 5 6 7 
x 

-2~~ ~- * . 

FIGURRE 2 

It is interesting to compare the rational approximation obtained from series of 
orthogonal polynomials with the Pad6 approximants obtained from a power series. 
The power series expansion from which the Pad6 approximant to a function is con- 
structed depends on the value (and derivatives) of the function at a single point and 
converges most rapidly near this point [1]. The polynomial expansion depends on 
weighted averages of the function over the interval of orthogonality and (when 
convergent) converges about equally rapidly over the entire interval. These prop- 
erties are reflected in the rational approximations constructed from the polynomial 
expansions. To illustrate these points we consider the function -log ((1 -x)2), 
whose power series expansion about x = 0 is given by 

(51) -log ((1 -x)/2) = log (2) + E xn/n , 1Ix < 1, 
n-1 

and whose Legendre polynomial expansion in x is given by 
0c 

(52) -log ((1 -x)/2) = 1 + E (2n - )/(n(n + 1))P,(x) X -1 _ x < 1. 
n-1 

The expansion coefficients in both cases have a similar asymptotic behavior. 
We have calculated the [4, 4] Pad6 approximant from (51) and the [4, 4] rational 
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polynomial approximant from (52). In Fig. 3 we compare the magnitudes of the 
relative errors. As previously mentioned, we see that the [4, 4] Pad6 approximant 
has a very small error near x = 0 with the error rising slowly away from x = 0. By 
contrast, the [4, 4] rational polynomial approximation fits the function with about 
the same (average) accuracy over the interval (-1, 1) with eight zeroes of the 
(relative) error function lying in the interval (-1, 1). 

10-2 

0 

10 - 

10- 

E 1086 

- 1.0 -0.6 -0.2 0.2 0.6 1.0 
X 

FIGUIRE 3 

One more point should be made. If the expansion (52) is truncated at n 8, 
rearranged in powers of x, and the [4, 4] Pade approximant constructed from this 
truncated series, the result must be identical to the [4, 4] rational polynomial 
approximation from the uniqueness of the rational form.** The coefficients from 
which the Pade approximants are constructed are a function of the truncation point 
and it is not often that the infinite series (52) can be rearranged into a power series 
(51). 

We will now consider in detail two other closely related examples. These ex- 
amples are limiting cases of the expansion of (1 - x)a as a -? -1 [4]. In the previous 
example the indications (admittedly based on scanty evidence) were that the 
diagonal sequence of approximations was converging. It may happen that no 
diagonal sequence of approximations exists. 

Consider first the rational approximations to -the function expanded in a (diver- 
gent) series of Legendre polynomials {Pi, 

co 

(53) (x - 1)-1 = E (21 + 1)4/(21 + 1)Pz(x), 
1=0 

where 4/' is the logarithmic derivative of the gamma function. For our purposes it is 
sufficient to know that i1 satisfies the recursion relation 

** I wish to thank G. A. Baker, Jr. for a discussion on this point. 
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It can be shown by induction using the recursion relations (14) and by the symmetry 
of Hf that 

(55) Hnn= (2m+1)4/(m+1), m>n 

=(2m + 1)yP(n + 1), m _ n. 

Referring then to the determinantal form (21) of the rational approximation 
it is easily seen that 

M 

(i) [0, M](x) = E (2m + 1)1(m + 1)Pm(X) x 
m=O 

(56) (ii) [1, M](x) = 1/(x-1), O M, 

(iii) [N. 01(x) = 1/(x- 1), 1 ? N, 

(iv) [N, M] (x) is indeterminant for M > 0 andN > 1. 

Since the original series was divergent, the sequence of elements in the first row is 
not convergent. The elements of the second row and those of the first column are 
(obviously) convergent to the function (x - 1)-1, and no other row or column nor 
any diagonal sequence even exists. 

A similar result obtains for the generalized function 

00 

(57) 5(1 - x) = Ad (I + 112)PI(x) X 
1=0O 

where the {Pi} are again Legendre polynomials and 8 is the Dirac delta function. 
The elements of the related matrix Hf are given by 

(58) Hfn = (m + 1/2) . 

The elements of the Pad6-like table are then given by 

M 

[0,MI(x) = : (m + 12)Pm() 0 0< M, 
m=O 

(59) [1 MI(x) = O/(x-1), < M 

[N,0](x) =O/(x-1), 1 <N. 

[N, M] (x) is indeterminant for M > 0 and N > 1 . 

The remarks after the previous example are applicable also in this case. 

6. Conclusion. Many additional properties of the approximation can be derived 
for particular choices of the set 49X}. These properties may depend on special prop- 
erties of the set under consideration and so are not generalizable to other sets of 
orthogonal functions. These special properties may be very important in any given 
problem. 

As an example, suppose the interval of orthogonality is even, [-a, a] and the 
functions gn(x) and pn(x) are even or odd according as the index n is even or odd. 
Then if a function is defined by an even (odd) series and an odd-odd (even-even) 



A METHOD FOR THE APPROXIMATION OF FUNCTIONS 287 

approximation is attempted, the Eqs. (18) have no solution. Also the even-odd or 
odd-even approximations are equal to adjacent nonvanishing elements in the table. 
These remarks may be verified by referring to the determinantal form of the ap- 
proximation (21) and noting that alternate elements of Hf vanish. In these even or 
odd cases, some computing economy can be effected by rewriting the recursion re- 
lation (12) for Hf so that it relates the elements Hfmon, Hmf2n Hf n,2, and reformulat- 
ing the algorithm so that only the even (odd) elements of { g i} are involved (we take 
B(x) to have only even terms in either case). 

This work was performed during the author's tenure of a postdoctoral appoint- 
ment at Los Alamos Scientific Laboratory, Los Alamos, New Mexico. In conclusion 
the author would like to thank Dr. Charles Critchfield and members of group T-9 
for extending to him the laboratory's hospitality and Drs. Leon Heller, John 
Gammel, and especially William Beyer for many helpful discussions and suggestions 
regarding the material presented here. 
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